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Optical Rotatory Power of Liquid Crystals 
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A theory of the very high rotatory power exhibited by cholesteric liquid crystals is developed by the 
use of the Jones calculus for optical systems. The calculations are based on the model proposed by 
de Vries in which the liquid crystal is regarded as built up of a large number of thin birefringent layers 
arranged helically. When light is incident normal to the layers, i.e. along the screw axis, selective re- 
flexion of one of the circularly polarized components takes place and the rotatory dispersion in the 
neighbourhood of the region of reflexion is anomalous. The reflexion curve and the amplitude attenua- 
tion factor, exp ( -~) ,  for circularly polarized light at normal incidence are derived as functions of 
wavelength by setting up difference equations closely similar to those formulated by Darwin in his 
dynamical theory of X-ray diffraction. Within the range of total reflexion, ~ is real, primary extinc- 
tion occurs and the medium is highly circularly dichroic. The spectral width of the reflexion and the 
primary extinction coefficient predicted by theory compare favourably with the experimental values. 
Outside the region of total reflexion, ~ is imaginary and opposite in sign on opposite sides of the re- 
flected band. This is responsible for the reversal of the sign of the rotation on crossing the band. The 
anomalous part of the rotation is a direct measure of the phase of the primary wave given by the 
dynamical theory. 

Introduction 

Friedel (1922) discovered that a certain class of liquid 
crystals, which he named 'cholesteric',  have optical 
rotatory powers of the order of several thousands of 
degrees per millimetre. The very large rotation is as- 
sociated with some other equally remarkable optical 
properties. When white light is incident on the surface 
of the liquid crystal, selective reflexion takes place over 
a small region of the spectrum, the wavelength of maxi- 
m u m  reflexion varying with angle of incidence in ac- 

cordance with Bragg's law. At normal  incidence, the 
reflected light is circularly polarized; one circular com- 
ponent is totally reflected over a spectral range of some 
200 A, whilst the other passes through unchanged. 
Further, contrary to usual experience, the reflected 
wave has the same sense of circular polarization as 
that of the incident wave. 

In the neighbourhood of the region of reflexion, the 
rotatory dispersion is anomalous and the sign of the 
rotation opposite on opposite sides of the reflected 
band. The behaviour is therefore similar to that of  an 
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optically active molecule in the vicinity of an absorp- 
tion. The anomalous rotatory dispersion around the 
reflecting region was first observed by Stumpf (1910) 
in amyl cyanobenzylideneaminocinnamate and later 
verified by Mathieu (1938, 1957) in a number of deriv- 
atives of cholesterol. 

A model for the molecular structure of the cholesteric 
liquid crystal was proposed by de Vries (1951) in an 
attempt to explain these unusual optical properties. 
He assumed the structure to be built up of a large 
number of thin birefringent layers with the principal 
axes of the successive layers turned through a small 
angle. He took the molecules in each layer to lie with 
their long axes approximately parallel to one another. 
Thus the structure may be looked upon as a nematic 
arrangement on which is superimposed an n-fold screw 
axis at right angles to the long axes of the molecules, 
n being a large number. The rotatory power of this 
type of structure but with a much larger pitch had, 
in fact, been worked out previously by Mauguin (1911) 
using the Poincar6 sphere to interpret the optical rota- 
tion produced by rotating the cover glass over a nematic 
liquid crystal. But Mauguin's calculations are not valid 
when the pitch of the helix is comparable to the wave- 
length of light. It was correctly pointed out by de Vries 
that a helical arrangement of birefringent layers would 
give rise to selective reflexion of circularly polarized 
light at normal incidence when the pitch is equal to 
the wavelength of light in the medium and, moreover, 
that the sense of the circular polarization would be 
unaltered by reflexion. However, his theory of the 
rotatory power is an essentially phenomenological one 
and does not explicitly take into account the molecular 
structure proposed by him, except in so far as to pos- 
tulate that the 'principal' dielectric constants twist 
round continuously in the form of a helix. The theory 
leads to the formula for the rotatory power 

2 n  0~ 2 
(1) 0 = -  p 8~'2(1 _ ~'2) ' 

where P is the pitch of the helix, ~ = ( e l -  e2)/2e, el and 
e2 are the principal dielectric constants of the un- 
twisted structure, e=½(el WEE), 2'=2/el/EP and ), is the 
wavelength in vacuum. Thus, according to the formula, 
the rotatory power should increase rapidly as the wave- 
length approaches the critical wavelength of reflexion 
20(=~1/2p), change sign on the other side of the re- 
flexion and then decrease in magnitude uniformly. Al- 
though the theory would appear to have explained the 
phenomenon broadly, the physical principles under- 
lying the calculations are not at all clear (see also 
Chatelain, 1954); in particular, the interesting question 
of why reflexions should cause a reversal in the sign 
of rotation still remains obscure. 

In this paper, we give a theory of the optical rota- 
tory power of cholesteric liquid crystals using the mo- 
lecular model proposed by de Vries. (As we shall see 
later, the systematic investigations of Robinson (1961) 
leave little doubt that this model is essentially correct.) 

It is shown by the dynamical theory that the effect of 
multiple reflexions is responsible for the anomalous 
rotatory dispersion. The variation of the rotatory power 
in the immediate vicinity of the reflected band pre- 
dicted by this theory is significantly different from that 
given by de Vries's formula. 

Normal rotatory dispersion 

We now proceed to calculate the optical rotation pro- 
duced by a helically arranged pile of birefringent layers, 
neglecting at first the effect of reflexions. Each layer 
is supposed to be only a few A thick. Since the pitch 
of the helix is assumed to be comparable to the wave- 
length of light, each turn of the helix will consist of 
several hundred layers, and the angle /? between ad- 
jacent layers will be of the order of 10 .2 radian. The 
question arises whether such thin layers may be looked 
upon as birefringent plates. But it is well known that 
when an electromagnetic wave passes through a sheet 
of isotropic scattering material, it acquires an addi- 
tional phase of -q0, where - iq0 is the complex am- 
plitude scattered by the layer in the exact forward di- 
rection when a plane wave of unit amplitude falls on 
it (see, e.g. James, 1954). This is equivalent to ascribing 
a refractive index to the layer. The argument may ob- 
viously be extended to anisotropic scatterers as well. 

We define a quantity y which represents half the 
phase difference between waves polarized along the two 
principal axes after passing through the layer of thick- 
ness p, i.e. 

= ~ (~,-  m)p. (2) 

Judging from the available data on nematic liquid 
crystals, the birefringence (Pl-P2) may be taken to be 
approximately in the range 0 .1-0 .3 .  Thus ), is 10 -3 or 
less, i.e. an order of magnitude smaller than p. 

We now apply the Jones calculus to such a system, 
assuming that light is incident normal to the layers, 
i.e. along OZ. Let the principal axes of the first layer 
be inclined at an angle/? with respect to the axes OX, 0 Y. 
If the Jones retardation matrix with respect to the 
principal axes is 

(e" 0 ) 
G = \01 re.l ~ , 

where ), is defined by (2), the retardation matrix with 
respect to OX, 0 Y is 

J l = SGS' , 
where 

[cos/? -sin/?~ 
S=S(/?)  = \sin/? cos/? ! ' 

and S' -- S -1 is the transpose of S so that SS' = S'S = E, 
the unit matrix (Jones, 1941 ; Hurwitz & Jones, 1941 ; 
see also Ramachandran & Ramaseshan, 1961). 

Now, if Do is the complex two-dimensional column 
vector with respect to OX, 0 Y representing the incident 
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light, the emergent light vector after passing through 
the layer is 

DI = J i D 0 ,  

where, as we are interested only in the state of polar- 
ization of the emergent beam, we neglect a factor 
exp (iq), r/=~z(/tl+/tE)p/~.. Let D1 be now incident on 
a second birefringent layer whose principal axes are 
inclined at 2fl with respect to OX, OY. The Jones 
matrix for this layer is 

S(2fl)GS'(2fl) = SEGS '2 , 

and the emergent vector is 

D2 = S2GS'2DI = S2GS'2SGS'Do 

= S2(GS')2Do = J2Do , 

where J2 = S 2 ( G S ' )  2 is the appropriate Jones matrix for 
this system of two layers. In general, if we have a pile 
of n layers, where the principal axes of the mth layer 
are inclined at mflwith respectto OX, 0 Y(m = 1 ,2 , . . .  n), 
the Jones matrix for the pile is evidently 

Jn = Sn(GS') n • 

We now proceed to an explicit evaluation of J n .  Ap- 
plying a result from the theory of matrices (Abel,s, 
1950; see Appendix), which has also been used by Born 
& Wolf (1959) in discussing light propagation in peri- 
odically stratified media, 

where 

and 

sin nO sin ( n -  1)0___ E , (3) 
( G S ' ) n =  s in0  A -  Sin0 

A = G S '  = (O ~' 
0) (cos  ,in ) 

e -l~ - sin fl cos 

cos 0=cos  fl cos 7. (4) 

Now the factor A in (3) is the effect of a single layer. 
Therefore, as far as the total effect of n layers is con- 
cerned, n being large, we may, without sensible error, 
put A ~_ S', i.e. exp (iy)_ 1 in A. Further, since 0 and fl 
are also small, though of an order of magnitude greater 
than 7, we may take sin 0_~sin fl~_fl; cos 0~_cos fl_~ 1. 
We then have on simplification 

cos nO sin nO) 
( G S ' ) n -  - s i n n 0  cos nO " 

Hence 

Jn=Sn(GS,)n..~ /cos nfl - s i n  nfl] ( cos nO sin nO) 
- \sinnfl cosnf l !  - sin nO cos nO 

= (cos n(fl-O) - s i n  n(fl-O)] 
\sin n(fl-O) c o s n ( f l - 0 )  ! " (5) 

Thus the effect of n layers is to produce a rotation of 
the incident vector through an angle a - - n ( f l - O )  in the 
positive direction. Since fl and ? are small, we have 
from (4) 

0 2 i~f l  2 -+- 72 . 

Therefore, 
~ = r/{/~__ (]~2 -F- ~2)1/2) 

~-- - -  n ? 2 / 2 f l  . (6) 

If n is the number of layers per turn of the helix of 
pitch P, nfl=2re and np= P. 

Substituting for y from (2) in (6), the optical rota- 
tion/pitch 

~(~/1 - - # 2 )  2P2  

4 )  2 

Thus the rotatory power in radians per unit length is 

7Z(fll --  flE)EP 
~o = - 422 (7) 

The negative sign indicates that the sign of the rotation 
is opposite to that of the helical twist of the structure. 
This formula is the same as that derived by Mauguin 
(1911) using the Poincar6 sphere and rolling cone 
method. It may also be shown to be equivalent to (1) 
when ~,'2,~ 1 (Robinson, 1961). 

The most detailed verification of (7) is due to Rob- 
inson (1961) who found that solutions of some poly- 
peptides in organic solvents, e.g. poly-y-benzyl-L- 
glutamate (PBLG) in dioxan, methylene chloride, 
chloroform etc., spontaneously adopted the cholesteric 
mesophase above a certain concentration. Under sui- 
table conditions, the solutions exhibited equi-spaced 
alternate bright and dark lines when observed through 
a microscope. The lines may be interpreted as a view 
of the structure at right angles to the screw axis so that 
the periodicity of the lines is equal to half the pitch 
of the screw. Robinson confirmed this interpretation 
by observations between crossed polaroids and also by 
the use of a quartz wedge. The retardation plotted 
against distance in a direction at right angles to the 
lines had an oscillating value, as is indeed to be ex- 
pected from the structure. The pitch for any given 
polypeptide depended on factors such as concentra- 
tion, solvent, temperature etc. When viewed along the 
screw axis no lines were seen, but a very high optical 
rotatory power was present. The rotation in every 
solution, with P ranging from 10-200/1, was found to 
be proportional to 1/2 2 . Robinson substituted the 
values of ~ and P in (7) and calculated the layer bi- 
refringence (/1~-/rE) per volume fraction of the poly- 
peptide in solution. The birefringence was remarkably 
constant despite the widely varying values of Q and P. 
He then prepared a solution with equal quantities of 
the O and L forms (PBDG and PBLG), which too, 
under certain conditions, adopted the spontaneously 
birefringent phase, only, in this case, it was not the 
twisted cholesteric structure but the untwisted nematic 
structure. He was therefore able to measure the bi- 
refringence directly and the value agreed well with that 
calculated from the rotatory dispersion formula. The 
experiments of Robinson show quite conclusively that 
this model is an accurate representation of the struc- 
ture of the cholesteric liquid crystal. 
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Dynamical theory of reflexion 

The results of the theory discussed in the previous 
section show that the liquid crystal behaves as if it 
had circular birefringence; in other words, right and 
left circular vibrations travel without change of form 
but at slightly different velocities. We shall now give 
a simple interpretation of how, under certain condi- 
tions, reflexion of one of the circularly polarized com- 
ponents takes place. Let right circular light given by 
D0=(~), referred to OX, O Y, be incident normally on 
the surface of the liquid crystal. We shall suppose that 
the structure is right handed, i.e. fl is positive. After 
passing though m molecular layers, each of thickness 
p, the light vector will be Do exp (- i t ; ) ,  where ~0= 
2nmluap/2,/za being the refractive index for right cir- 
cular light and 2 the wavelength in vacuum. To cal- 
culate the reflexion at the boundary between the mth 
and (m+ 1)th layer, we resolve the light vector along 
the principal axes of the mth layer, which are inclined 
at an angle mfl with respect to OX, 0 Y. The resolved 
components will be given by 

( cosmf l  sinmfl) ( 1 ) e x p ( _ i t p )  
-sinmfl cosmfl \ i  =(1 

[ i (mp-  ~0)]. (8) i ! exp 

Since the principal axes of the (m+ 1)th layer are ro- 
tated slightly with respect to those of the mth layer, 
one of the components of (8) will, on emerging from 
the ruth. layer, meet a 'rarer' medium, whereas the 
other component will meet a 'denser' medium. Thus 
one component will get reflected without any change 
of phase and the other with a change of phase of re. 
As a consequence, the sense of the circular polarization 
remains the same after reflexion. Referred to the prin- 
cipal axes of the ruth layer, the reflected wave on reach- 
ing the surface will be 

(_1i) exp[i(mfl-2~o)], (9) 

neglecting a factor representing the reflexion coefficient 
of the layer. Transforming back to OX, OY, (9) be- 
comes 

cos mfl -s in  mfl] 1 
[i(mfl-- 2~0)] 

s,n 

--( 
which is a right circular wave propagated along the 
negative direction of OZ. When 2=l~aP, 2rq~ap/2=p, 
or ~0=m~, since np=P and nB=2~, where n is the 
number of molecular layers per turn of the helix. The 
phase factor exp [2i(mfl- ~0)] in (10) then becomes unity 
irrespective of the value of m, and the waves reflected 
by the successive layers will all cooperate to give rise 
to a strong interference maximum. On the other hand, 
if the structure is left handed, i.e. fl is negative, (mfl-  ~o) 

does not vanish when 2=luaP. Therefore, the reflected 
waves from the different layers will not be in phase 
and the vibration will be transmitted unchanged. 

It has been assumed in (9) and (10) that the reflex- 
ion coefficients for the two linearly polarized compo- 
nents are the same. This may not be quite true and 
it is possible that right circular light acquires a slight 
ellipticity after reflexion from a single layer. However, 
if the amplitudes of the waves reflected by the different 
layers of the helical structure are added, the resultant 
reflected wave will evidently be circularly polarized. 

The complete solution of the problem has to take 
into account the effect of multiple reflexions. We may 
do so by setting up difference equations in a manner 
closely similar to that used by Darwin (1914) in his 
dynamical theory of X-ray diffraction. Such a proce- 
dure is valid because, as we have said earlier, circularly 
polarized vibrations travel in the medium without 
change of form and the interference of multiply re- 
flected waves with one another and with the primary 
wave can be evaluated directly. 

For the purposes of this theory, we regard the liquid 
crystal as consisting of a set of parallel planes spaced 
at a distance P apart. Each plane therefore replaces 
the n molecular layers per turn of the helix of pitch P. 
We ascribe a reflexion coefficient - i Q  to each plane 
for circularly polarized light at normal incidence. 
Clearly, - i Q  represents the over-all effect of the re- 
flexions from the n molecular layers, and is related to 

- iq, the reflexion coefficient of a single molecular layer, 
in exactly the same way as the structure factor F of 
a crystal is related to the scattering fac to r fo f  an atom. 
Since Darwin's theory can be applied to any crystal 
merely by substituting F for f,  our model should be 
adequate for deducing the reflexion characteristics of 
the liquid crystal. However, unlike in the X-ray case 
where the reflexion curve is usually derived as a func- 
tion of the Bragg angle, we work it out here as a func- 
tion of the wavelength. 

We shall suppose, as before, that the structure is 
right handed and that right circular light is incident 
normally. Let Tr and Sr be the complex amplitudes 
of the primary and reflected waves respectively at a 
point just above the rth plane. (The topmost plane is 
designated by the serial number zero.) We then write 
the difference equations, suitably modified to the op- 
tical case, assuming that absorption is negligible (see, 
e.g., James, 1954): 

Sr= - iQTr+ exp (-i~o)Sr+~ (11) 
Tr+~=exp (-iq~)Tr-iQ exp (-2i~o)Sr+l , (12) 

where ~0 = 2rqzaP/2 and /~a is the refractive index for 
right circularly polarized light. The reflexion coefficient 
is here taken to be the same on both sides of the plane. 
Replacing r by r - 1  in (12), and using (11) and (12) 
we obtain 

Tr+l + Tr-i 
= [exp(i~o)+ exp(-i~o)+QZexp(-i~o)]Tr. (13) 
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We assume a solution in the form 

Tr+t = x T r  , (14) 

where x is independent of r. Hence x must satisfy 

1 
x + - -  = exp (iq~) + exp ( - i~o) + Q2 exp ( - iq~). (15) 

X 

Substituting for Tr+l from (14) in (12), and using (11) 
we get 

Slv+l 

x -  exp ( -  i~o) S t .  (16) 
x exp ( - i~0) - exp ( - 2iq~) - Q2 exp ( - 2i~0) 

From (15) and (16), we have 

Sr+l = x S r  . (17) 

As we have seen earlier, the reflexion condition is 
p a P =  20, or ~00 = 2zr. Let us put ~0 = 2n20/2 = 2re + e, 
where 

e= - 2rc(),- 2o)/2, (18) 

which is a small quantity in the neighbourhood of the 
reflexion. We have, therefore, from (15) 

1 
x + - -  = exp (ie) + exp ( -  it) + Q2 exp ( -  ie). (19) 

x 

This suggests that in the neighbourhood of the reflex- 
ion we may put 

x = exp ( - ~ )  exp (-i~00)= exp ( - ~ ) ,  (20) 

where ~ is small and may be complex. From (19) and 
(20) we have 

~,,~ + (QZ-e2) ' /2  . (21) 

Using (17), (11) and (21), and putting r = 0 ,  we obtain 
the ratio of the reflected to the incident amplitudes" 

So _ Q (22) 
To e + (e 2 -  QZ)l/2 • 

When - Q < t < Q, (22) may be expressed as 

So _ Q (23) 
To e _ i ( Q 2 - ~ 2 )  I)2 ' 

and hence 
R =  ISo/TolZ= 1 . 

The reflexion is therefore total within this range. Out- 
side this range, the reflexion decreases rapidly and sym- 
metrically on either side. It will be seen from (18) that 
when 2>20, e is negative, and so the negative value 
of the square root in the denominator of (22) has to be 
taken because R can never exceed unity. Similarly when 
2 < 20, the positive value has to be taken. 

Spectral width of total reflexion and primary extinction 

The range of total reflexion extends from e= + Q to 
- Q ,  i.e. from 2o-Q2/2rc to 2o+ Q2/2~z. The spectral 
width of the reflexion is therefore Q~./rc ~_ Q2o/rc. 

In the solution of the difference equations, we have 
assumed that the amplitude of the primary beam is 

changed by a factor exp ( - ~ )  on passing from one 
plane to the next. Within the range of total reflexion 
Q2 > ez, so that ~ is real and primary extinction takes 
place. To evaluate the extinction coefficient we first 
calculate the mean value of ~ within the totally re- 
flecting range, 

( QZ - e2)I /2de = rcO/4 . 
~ = ~ o  

The intensity falls by a factor exp ( - 2 4 )  on passing 
through a thickness P, or by exp ( - rcQ/2P)  per unit 
length. 

Outside the region of total reflexion, ~ is imaginary 
and primary extinction vanishes. 

We shall now use these results to make numerical 
estimates of the theoretically expected magnitudes of 
the spectral width of the total reflexion and the primary 
extinction. Taking 20 =5600 A,, P=3500  A and Q =  
0"05, the width of the reflexion turns out to be 90 A 
and the extinction coefficient r t Q / 2 P =  2.24 × 103. Thus 
the intensity is reduced to about 1/1000 of its incident 
value after passing through a thickness of 31 microns. 

These values compare quite favourably with the ex- 
perimental data. The width of the reflexion has been 
reported by Mathieu (1938, 1957) to be about 200 A 
in some cholesteric liquid crystals. He has also re- 
marked that within this range, unpolarized light be- 
comes almost perfectly circularly polarized after tra- 
versing a thickness of a few tens of microns. Consider- 
ing that our calculations are for the ideally perfect 
case, the agreement with experiment may be regarded 
as an excellent confirmation of the theory. 

Anomalous rotatory dispersion 

We have seen earlier that in the region of normal dis- 
persion, the optical rotation per thickness P of the 
liquid crystal is given by 

1 ) P  n~ '2 
= ~ ( e a - ~ 0 z ) =  , ( / ~ a - . z )  = 2/~ ' 

where ~0a,~0z are the phase retardations and/ ta , / t t  the 
refractive indices for right and left circular vibrations. 
(In conformity with the convention adopted in the 
theory, a clockwise rotation as seen along the direction 
of propagation of light is taken as positive. This is 
contrary to normal usage.) In the region of reflexion, 
the dynamical theory shows that the right circular com- 
ponent suffers an additional phase retardation and 
also, under certain circumstances, attenuation as it 
travels through the medium. Left circular light, on the 
other hand, exhibits normal behaviour throughout, and 
as a consequence the rotatory dispersion is anomalous 
around the reflecting region. We shall now investigate 
the anomalous dispersion in detail. 

Case I. Region  o f  total  ref lexion 

According to (20), the amplitude of the right circular 
wave as it passes from one plane to the next is given by 
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Tr+l  = x T f  , 

where 
x = exp ( - ~ )  exp ( -  i~p0), 
~ = (Q2-  c2)1/2 , 

~Oo = ~oa- e = 2.paP~2 + 2.(2 - 20)/4. 

Inside the totally reflecting range, ~ is real and there- 
fore the medium becomes highly circularly dichroic. 
If very thin films are employed, the emergent light is 
elliptically polarized. It is readily seen that the ellip- 
ticity Z produced per thickness P is given by 

1 - exp ( - ~ )  = tanh ~/2, 
t a n z =  l + e x p ( - ~ )  

or 
Z ~ / 2  . 

The azimuth of the major axis of the ellipse after pas- 
sing through a thickness P is 

1 2P - (2 -20)  
= ~- (~Oo- ~oz) = (/~a-/L~) + 2 

ny 2 . (2 -- 40) 
= _ - 2 / f -  + 

Therefore the rotatory power 
- ( / h - / ~ 2 ) 2 P  . ( 4 -  20) 

Q . . . .  4~2 + p 2  , (24) 

which is valid within the range k o - Q 2 / 2 - < 4 < 4 0 +  
02/2.. 

Case II. Outside the region o f  total reflexion 

Outside the totally reflecting range, ~=i(e 2 -  Q2)1/2 
and may be positive or negative depending on whether 
e, given by (18), is positive or negative. Therefore, 

= ½[(e2_ 02)1/2 + ~00- ~0d 

_ ny2 f _ [ l _  (1 Q2 ) 1/2] 
- - - 2 f l  2 - e 2- 

_ ny 2 .(2--2o) [ 1 -  ( 1 -  
- - ~ 2 ~  + 2 '~21 J" 

Hence the rotatory power 

0 . . . . . .  -4)i  + P2 e 2 I 

1: F 

D i s c u s s i o n  

To facilitate comparison with experiment, we shall re- 
write (24) and (25) using the standard sign convention 
according to which a clockwise rotation as seen by an 
observer looking at the source of light is taken to be 
positive. When 

20-  Q2/2 ,  < 2 < 20 + Q 2 / 2 , ,  

18(fll --/z2) 2P 18(2 -- 20) . 
. . . . . . . . . . . .  (26) 

0 = 422 P2 ' 
when 

2 < 40-  Q 2 / 2 , ,  or 2 > 40 + Q 2 / 2 , ,  

= _ ...... [ , _  

(27) 
where Q is expressed in degrees per millimetre. 

Fig. 1 shows the reflexion curve for right circular 
light calculated from the dynamical theory with Q = 
0.05. As discussed earlier, with this value of Q the 
spectral width of the total reflexion turns out to be 
about 90 A. Fig.2 shows the corresponding rotatory 
dispersion curve given by (26) and (27) taking 20= 
5600A, P = 3 5 0 0 A  (or / t a=l '6 )  and /q -p2=0 .15 .  
The assumption has been made tha t /q - /Zz  is inde- 
pendent of wavelength. The sign of the rotatory power 
changes twice on passing from one side of the reflecting 
region to the other in a manner closely analogous to 
the rotatory dispersion of a molecule around an opti- 
cally active absorption band. The two wavelengths 
corresponding to zero rotatory power occur at 2> 20, 
one inside the region of circular dichroism and the 
other outside. These results appear to be at variance 
with the predictions of de Vries's theory. Far away 
from the region of reflexion on either side, i.e., when 
e2~ Q2, the second term in (27) becomes small and the 
rotatory dispersion approaches the normal value. A 
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~ ~ j  . . . . . . .  ~ - - ' ~  

5400 5600 5800 x (A) 

1 / 2 ]  . 

(25) 

Fig. 1. Reflexion curve for right circular light. 
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Fig.2 Anomalous rotatory dispersion in region of reflexion. 
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comparison of these curves with those given by Mathieu 
(1957) shows that the theoretical relationship between 
reflexion, circular dichroism and anomalous rotatory 
dispersion is in general agreement with observations. 

It is a noteworthy fact that the phenomenon brings 
out clearly certain aspects of the dynamical theory 
which are not so easily demonstrable in the X-ray case. 
For example, the circular dichroism in the totally re- 
flecting range is a striking proof of the effect of primary 
extinction, and similarly, the anomalous rotatory 
power is direct evidence of the variation of the phase 
of the primary wave in the region of multiple reflexions. 

A P P E N D I X  

In order to obtain an explicit expression for 3n, we 
evaluate A n where 

( e 'Y  cosfl e'Ysinfl~ = ( a b )  
A =  GS'(fl) = \ _  e_tr sin fl e -iv cos fl] _ _ c  d ' say. 

We observe that A is unimodular, i.e. 
a d -  bc = 1 . (A 1) 

We give here a direct method of determining A ~* for 
an arbitrary unimodular matrix A, whereas the method 
due to Abel,s (1950) depends on the Lagrange-Syl- 
vester interpolation formula. The characteristic equa- 
tion 

] ( A - 2 E ) 1 - 2 2 - 2 ( a + d ) +  1 =0  

yields the eigenvalues exp ( + iO), where 
a + d  

cos 0 - 2 (A2) 

/ \ - b  / \ - b  
Evidently, [a_etO ) and [a_e__lo ) may be taken a s  

the eigenvectors belonging respectively to the eigen- 
values e l° and e -l°. Hence, with 

a e l° a -  e -1° ' 
we have 

and 
A n = (TAT-X)n = TAnT-1 

( a - b  - b  (eo° 
= _ e i O a _  e-tO) e-Ohio) 

i a-e- o 
× 

_ 5 , e  l° 
_ 

A 

where 

Thus 

A= d e t T = - 2 i b s i n 0 .  

1 A n -  
sin 0 

i a × sin nO(a2-2a cos 0+ 1) 
- b sin (n+ 1)O-a sin nO 

(A3) 
Using (A 1), (A2) and the relation 

sin (n+ 1)0+ sin ( n -  1)0=2 sin nO cos 0 ,  

we rewrite the elements of the second row of (A3) and 
obtain 

An _-sinn0_sln. 0 (a b) _ sin (n-1)0sin. 0 (10 01) 

_ , , ~ z )  A , ~ z )  E ( A 4 )  - -  U n _  1 - -  t . ) n _  2 , 

sin (n+ l )0  is the Tschebychev poly- where U~, ~) = sin 0 

nomial of the second kind in z=  cos 0. 
The expression (A4) is applicable to our problem 

with 
a + d  

cos 0 - ~ -  - cos p cos ~,. 
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